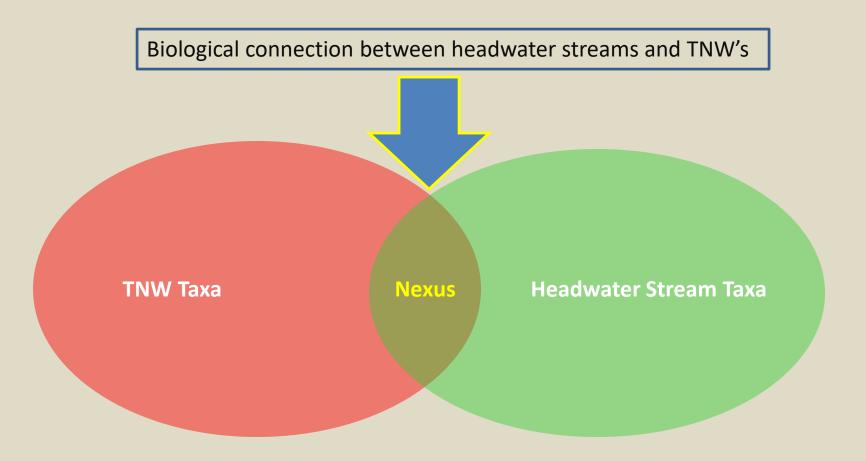
Macroinvertebrates in Headwater Streams Across EPA Region IV in the Southeast.

Ross Vander Vorste

Larry Eaton

North Carolina Division of Water Quality
Wetlands and Stormwater Branch
Program Development Unit



History

- Rapanos/Carabell (2006) Supreme Court decision
 - Intermittent streams are jurisdictional if they can be determined to have "relatively permanent water" or a "significant nexus" with TNW's

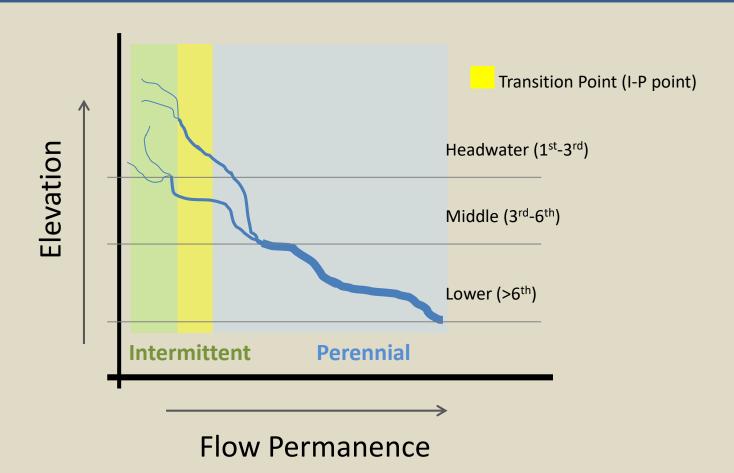
 NC wants to make the fuzziness more clear in order to protect those stream miles that meet the criteria

Overlap with TNW's

History

 The USACE and EPA are interested to see if results will be similar throughout Region 4

Project Goals:


- 1. Document hydrologic regimes in headwater streams to determine RPW.
- 2. Characterize macroinvertebrate fauna in headwater streams to demonstrate significant nexus with TNW's.

Headwater Streams

Hydrology

- •Small, sometimes intermittent channels
- •Flow from several weeks to months each year
- Organic debris lines or piles sometimes present
- Soil-based evidence of high water table sometimes present

Headwater Streams

Headwater Streams

Biology

- Diverse and abundant benthic community
- Generally, macroinvertebrate communities differ between intermittent and perennial streams
- Unique habitat and water quality settings harbor distinct biota

...Headwater species include permanent residents as well as migrants that travel to headwaters at particular seasons or life stages. Movement by migrants links headwaters with downstream and terrestrial ecosystems, as do exports such as emerging and drifting insects. Exemplifying this diversity are three unmapped headwaters That support over 290 taxa. Even intermittent streams may support rich and distinctive biological communities...

Meyer, Judy L., David L. Strayer, J. Bruce Wallace, Sue L. Eggert, Gene S. Helfman, and Norman E. Leonard, 2007. The Contribution of Headwater Streams to Biodiversity in River Networks. *Journal of the American Water Resources Association* (JAWRA) 43(1):86-103. DOI: 10.1111/j.1752-1688.2007.00008.x

Study Area

Region IV (Southeast)

13 Level III Ecoregions

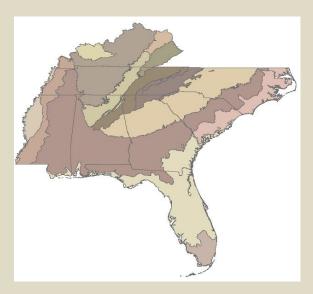
45 Level IV Ecoregions

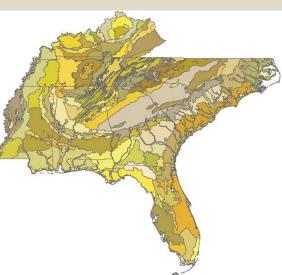
TN: 48

SC: 30

GA: 35

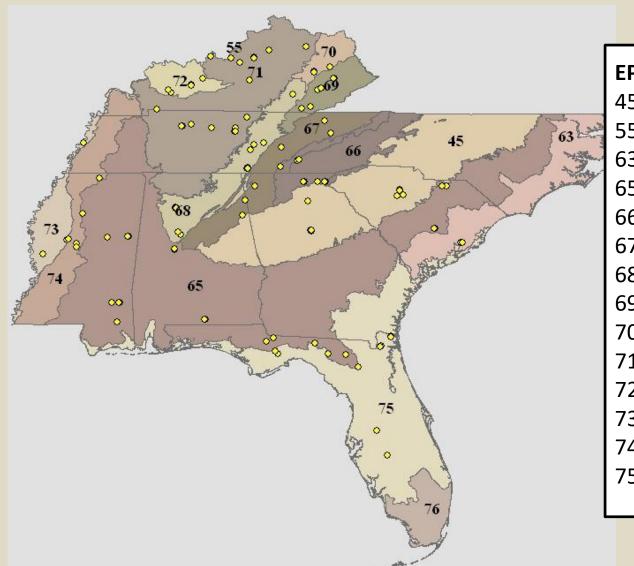
FL: 20


AL: 19


MS: 24

KY: 42

Total Samples: 218*


*before 6Nov11

Study Area

EPA Region 4 Level III

- 45. Piedmont
- 55. Eastern Corn Belt Plains
- 63. Middle Atlantic Coastal Plain
- 65. Southeastern Plains
- 66. Blue Ridge
- 67. Ridge and Valley
- 68. Southwestern Appalachians
- 69. Central Appalachians
- 70. Western Allegheny Plateau
- 71. Interior Plateau
- 72. Interior River Valleys and Hills
- 73. Mississippi Alluvial Plain
- 74. Mississippi Valley Loess Plains
- 75. Southern Coastal Plain

Methods

Site Selection:

- Use Gazetteer to identify stream
- Selected minimally impacted watersheds
- Locate stream and hike to find origin
- Determine flow period transitions (ephemeral, intermittent, perennial)

Benthic sampling method:

- •2 qualitative sweeps per site
- Composite sample
- Preserve in EtOH

Laboratory Method:

- Pick 100% of invertebrates
- •Identify to genus or species
- Consult with regional experts and taxonomists at NCDWQ
 Biological Assessment Unit

Common Taxa

Kentucky

- 1. Crangonyx
- Amphinemura delosa
- 3. Leuctra
- **Paraleptophlebia** 4.
- 5. Parametriocnemus lundbecki

Tennessee

- 1. Leuctra
- 3. Lepidostoma
- Conchapelopia
- Amphinemura delosa 5.

- **Pisidium**
- Diplectrona modesta

Mississippi

Pseudolimnephila

Synurella bifurca

Neoporus

- Parametriocnemus lundbecki
- 4.

Alabama

- Rhyacophila ledra/fenestra 1.
- 2. Crangonyx
- Lepidostoma
- Amphinemura delosa
- Leuctra

South Carolina

- Crangonyx 1.
- 2. **Enchytreidae**
- Lumbiculidae 3.
- **Platytipula**
- 5. Simulium

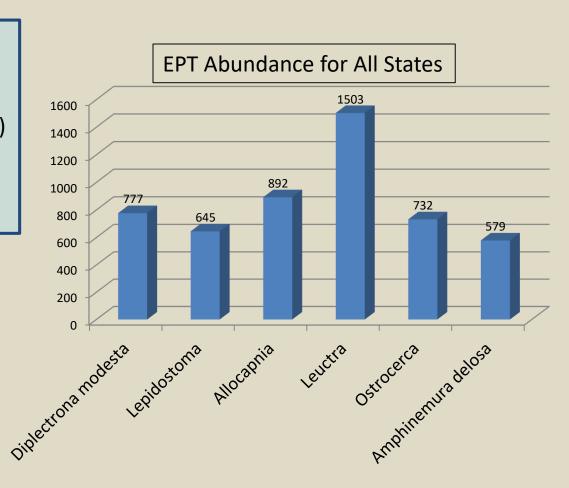
Georgia

- Lumbriculidae
- Hexatoma
- Parametriocnemus lundbecki 3.
- Diplectrona modesta
- **Pseudolimnephila**

Florida

- 1. **Neoporus**
- 2. Crangonyx
- 3. Hexatoma
- Polypedilum illinoense
- Lumbriculidae

Common Taxa

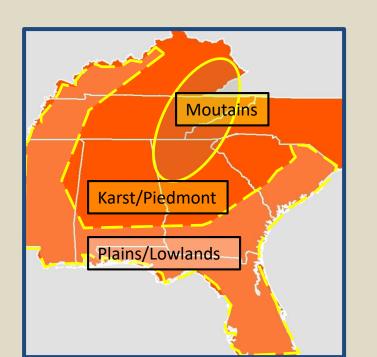

All States

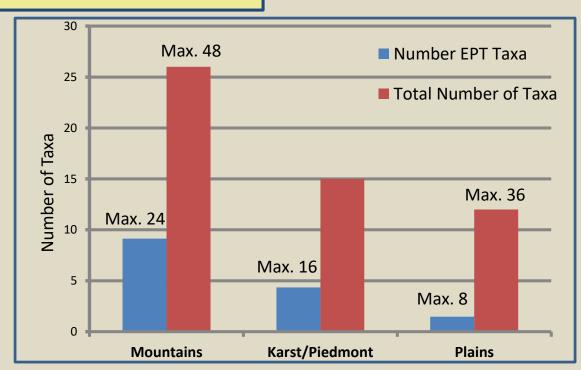
Frequency (n=218 samples)

- 1. Crangonyx (40%)
- 2. Parametriocnemus lundbecki (31%)
- 3. Conchapelopia (28%)
- 4. Lumbriculidae (27%)
- 5. Neoporus (24%)

All States Abundance

- 1. Crangonyx
- 2. Lirceus fontinalis
- 3. Paratendipes albimanus
- Leuctra
- 5. Tribelos jacundis




Variability between Ecoregions

Mountains (66, 67, 69, 70): 48 samples

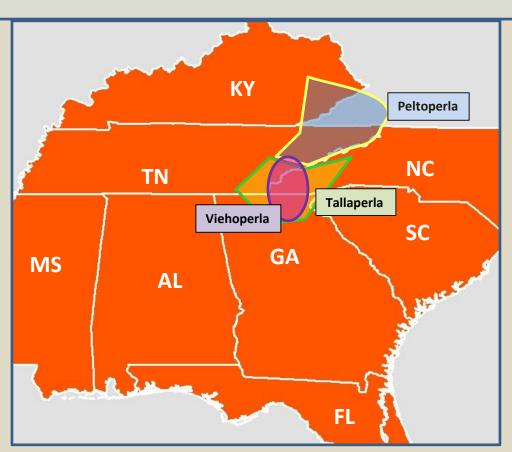
Karst and Piedmont (71, 68, 45, 72): 98 samples

Plains and Lowlands (75, 65, 73, 74, 55, 63): 71 samples

Regional Distributions

Peltoperlidae <u>Peltoperla</u>

Distribution: TN, VA, WV, KY*


<u>Tallaperla</u>

Distribibution: TN*, GA*, NC

Viehoperla

Distribution: GA*, NC

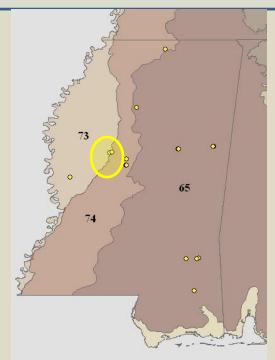
Occurrence: rare

^{*}collected from sites on this project

Rare and Weird Taxa

 Possible range extension or new species of Diplectrona collected from the Bluff Hills ecoregion (74a) in western MS

Name: *Diplectrona rossi?*Location: western MS


Habitat: spring seep

Eric Fleek© NC DWQ Name: Diplectrona rossi Morse

Location: eastern Louisiana

Habitat: spring seep

Rare and Weird Taxa

Caddisflies

Homoplectra monticola*

Goerita betteni

Theliopsyche

Stoneflies

Beloneuria stewarti*^

georgiana*^

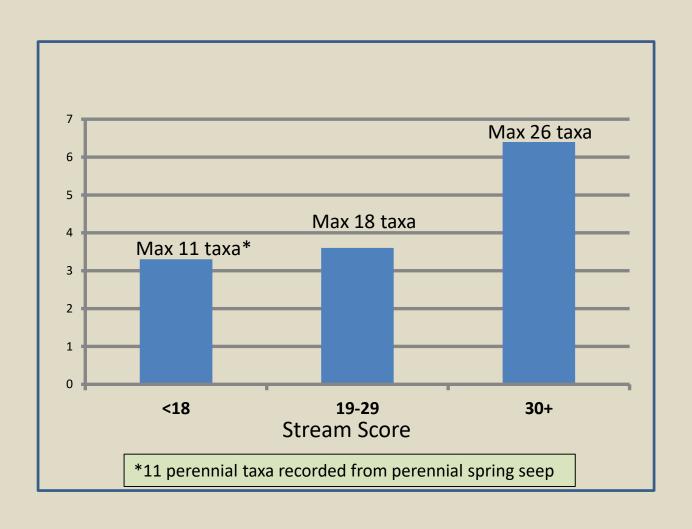
Diploperla morgani*

Homoplectra monticola

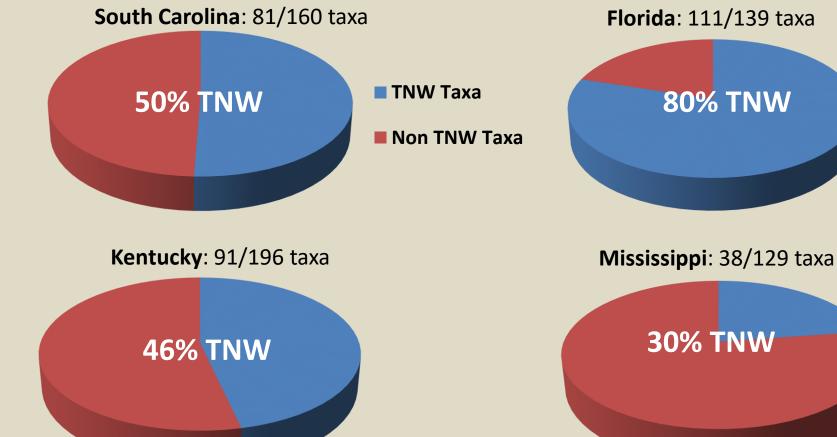
Theliopsyche sp.

^{*}Listed as significantly rare or vulnerable to Extirpation (NC NHP 2010, Morse et al. 2008)

[^]suspected, awaiting confirmation

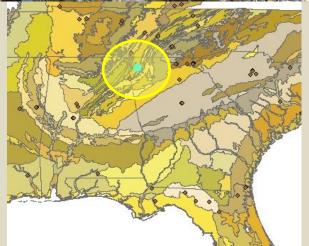

Taxa as Perennial Indicators

Order:	Ephemeroptera (Mayflies)	Plecoptera (Stoneflies)	Trichoptera (Caddisflies)	
Family:	Baetidae	Peltoperlidae	Hydropsychidae	
	Caenidae	Perlidae	Lepidostomatidae	
	Ephemerellidae	Perlodidae	Limnephilidae	
	Ephemeridae		Molannidae	
	Heptageniidae		Odontoceridae	
	Leptophlebiidae		Philopotamidae	
	Siphlonuridae		Polycentropidae	
			Psychomyiidae	
			Rhyacophilidae	

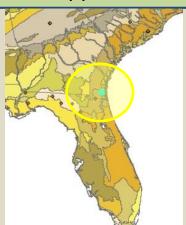

Table 3: Additional indicators of perennial streams

	Megaloptera	Odonata	Diptera	Coleoptera	Mollusca
Family:	Corydalidae Sialidae	Aeshnidae Calopterygidae Cordulegastridae Gomphidae Libellulidae	Ptychopteridae	Elmidae Psephenidae	Unionidae Ancylidae Planorbidae Pleuroceridae
Family & Genus:			Tipulidae Tipula sp.	Dryopidae Helichus (adult)	

Taxa as Perennial Indicators


TNW Taxa

Issues


Streams that appear as streams-no intermittent reach

Conclusions

- Supporting evidence showing large amount of diversity.
 - as many as 48 taxa per sample
 - found over 200 aquatic taxa in headwaters

- Located several rare taxa that are vulnerable to extirpation
 - many species listed on State Rare/Threatened lists were found in small streams and springs.

Conclusions

- Finding significant overlap between headwater communities and TNW's
 - as much as 80% overlap for statewide taxa generated in headwater streams
 - several TNW taxa found in each sample

- Supporting evidence to show significant nexus between headwaters and TNW's.
 - Same species occur in headwaters as TNW
 - Headwaters act as source population for many species

Acknowledgments

US Environmental Protection Agency US Army Corps of Engineers NC DWQ Biological Assessment Unit Mark Vogel- KY DOW Debbie Arnwine-TN DEC Jim Glover-SC DEQ Michelle Brossett- GA EPD Elizabeth Miller-FL DEP Lisa Huff- AL DEM Mike Beiser- MS DEW Bill Crouch- US FWS Mike Floyd-US FWS

Contact: Ross Vander Vorste @ ross.vandervorste@ncdenr.gov 919-733-3176

Eric Fleek ©