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Introduction 

Background 
Maps of the location and extent of wetlands are used for many purposes, including: natural resource research 

and management; environmental impact assessments for transportation planning and other development 

activities; hydrological and climatological modeling; water quality and watershed assessments; identification of 

conservation or ecological restoration opportunities, including compensatory mitigation; training and/or 

verification data for other remote sensing methods for land classification; and outreach/education to the 

general public. The most commonly used wetlands map in North Carolina (NC) is the National Wetlands 

Inventory (NWI) and this source has been incorporated into other mapping products, such as the US Geological 

Survey (USGS) 1:24,000 scale topographic maps and current US Topos, National Resources Conservation Service 

(NRCS) county soil survey maps, National Land Cover Database (NLCD), and NC Division of Coastal Management 

(NC DCM) maps developed for the eastern portion of NC (Davis et al. 2019, Sutter 1999, Yang et al. 2018). 

However, the NWI was not designed to support identification of features commonly considered as wetlands, 

which are characterized by shallow inundation and saturation sufficient to support hydrophytic-dominated 

vegetation communities and development of hydric soils. 

Development of the National Wetland Inventory (NWI) was begun by the US Fish and Wildlife Service in the 

1970’s using the data sources, technologies, and wetland classification system available at that time. Mapping in 

NC was primarily completed using 1980’s-era aerial imagery and there have been few updates since its initial 

mapping. In addition to the age of the data, the utility of the NWI is also limited by a relatively large minimum 

mapping size (0.5 ac.), relatively coarse resolution of the source imagery, and inclusion of many features (such as 

deepwater and lotic systems) that do not meet the common definition of “wetland”. However, it is the only 

widely available map of wetland locations and extent within NC and for much of the US, and so is widely used 

for purposes for which it was not designed. The accuracy of the NWI was recently assessed for NC by NCDWR 

(NCDWR 2021) and found to be of inconsistent and often poor accuracy, particularly for smaller wetlands (≤1.0 

ac.). This was particularly problematic in the central and western portions of the state, where wetlands tend to 

be much smaller than 1.0 ac. in size, and so there were high rates of omission in these areas.  

Several past and current initiatives 

across the US have been taken to 

facilitate updating the NWI (Figure 1). 

Many of these projects, particularly 

the recently completed statewide 

mapping in Minnesota, have been 

well-documented (e.g., Ducks 

Unlimited 2008, 2013, 2016, and 2018; 

Saint Mary's University of Minnesota 

2015, 2018). Updates were completed 

in accordance with the existing 

wetland mapping standards for NWI 

(FGDC 2009), which require manual 

review of aerial photography and 

ancillary data sets (such as topography 

and soils), manual digitization of likely 

  

Figure 1 Recent (blue) and active (hatched) NWI Update projects (US Fish and 
Wildlife Service 2021) 
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wetland features, and assignment of a wetland type using the Cowardin classification system (Cowardin 1979). 

This approach is time- and resource-intensive, though far less so than field mapping. For example, the statewide 

update for Minnesota took 10 years and cost just over $7 million (Figure 2) (Kloiber and Macleod 2019). NWI 

updates still rely on manual photointerpretation and heads-up digitizing within GIS (Herb Bergquist, US FWS, 

pers. comm., May 19, 2020), but recent projects like those in Minnesota use some level of automated 

classification and modeling to identify areas with a high likelihood for being a wetland based on soils, 

topography, hydrology, and other factors. This information complements and helps streamline the manual 

photointerpretation process, though often requires up-front investment in terms of data acquisition. 

 

Figure 2 Reported schedule and costs for MN statewide update of NWI (from Kloiber 2019) 

Other projects have investigated the potential for remote identification of wetland maps outside of the NWI 

framework. Some are relatively simple and intended to replicate the types of processes currently done on an ad 

hoc basis by natural resource professionals, such as simple overlay analyses in GIS (Martin et al. 2012). Others 

have taken advantage of the variety of high-resolution data and the relatively cheap and fast computing abilities 

currently available and applied “big data” modeling approaches, such as machine learning. This latter approach 

is particularly prevalent in the field of remote sensing (i.e., spectral analysis of aerial and satellite imagery) and 

often focuses on identification of key spectral signatures for individual vegetation species or communities found 

in wetlands. Other researchers have focused on using non-spectral spatial data as modeling inputs, such as 

terrain and surface hydrology characteristics derived from Digital Elevation Models (DEM). These terrain-derived 

methods are often less resource-intensive, since they focus on creating more generalized models to capture a 

variety of wetland types based on geomorphologic and hydrologic signatures.  

One example of research using non-spectral data for predicting wetland locations was completed within the 

Great Smoky Mountains National Park in western NC. This research study used the machine learning approach 

MaxEnt along with a combination of DEM-derivatives, vegetation, and climate variables to develop maps 

predicting the probability of wetland presence within the park boundaries (Pfennigwerth et al. 2019). 

Researchers in neighboring Virginia applied another machine learning method (Random Forests) to identify 

wetlands using primarily terrain derivatives (O'Neil 2018), and their methods have since been integrated into 

ESRI ArcGIS Pro software as part of the Arc Hydro toolbox (ESRI 2020). The Random Forests modeling approach 

has also been used by researchers working for the NC Department of Transportation (NCDOT) to identify 

potential wetlands in transportation project corridors, which is anticipated to help streamline their 

environmental impact assessments and result in significant savings in time and costs.  

These examples have demonstrated the potential for predicting location and extent of wetlands using readily 

available spatial data in the types of landscapes typically found in NC without the limitations inherent in the 

required methods associated with updating the NWI. A model predicting location and extent of wetlands in this 

way could potentially result in a wetland mapping product that is more relevant to the majority of the current 

users of the NWI. The project described herein was initiated to build on the prior research on remote 
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identification of wetlands in and near NC and determine the feasibility of this type of approach to support a 

broader, statewide wetland mapping effort in the future. Updating or creating publicly available wetland maps 

for NC statewide would be a significant effort, though incorporating automated classification methods would 

likely provide significant efficiencies as compared to the largely manual process required by the NWI.  

Study objectives 
This project examined several different spatially explicit, automated modeling approaches for remote 

identification of wetlands in NC. Accuracy of the modeling results were then compared to currently available 

wetland maps (NWI and field-verified wetlands polygons) to identify modeling methods that showed potential 

for accurately identifying the location and extent of wetlands within NC. It is anticipated that these types of 

automated modeling methods could result in maps that provide a better representation of wetland types of 

interest to most researchers, scientists, regulators, and the regulated community than the NWI and be more 

cost-effective and quicker to produce than the methods required by NWI.  
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Methods 

Project area 
Overlay models were completed for all of NC but results were also examined by Level III ecoregions (Griffith 

2002) (Figure 3) to assess any potential spatial variability. For the machine-learning methods (MaxEnt and WIM) 

the processing time required to develop models for large areas was much greater, so a smaller, targeted study 

area was selected based on availability of field delineated data to be used for model testing and training. This 

targeted study area was comprised of the largest contiguous portion of the Northern Outer Piedmont (NOP) 

Level IV ecoregion in NC, which begins south of the Raleigh metropolitan area and stretches north to the Virginia 

state line, east to a major geological fall line where the Piedmont transitions to the Inner Coastal Plain, and west 

to the NOP boundary with the Triassic Basins and Slate Belt Level IV ecoregions. Much of the southern portion of 

the targeted study area contains a range of developed land use, including intense development in and around 

the area of Raleigh. The northern portion of the targeted study area is far less developed, and includes 

significant forested areas, as well as two major river systems (the Neuse and Tar) that have been impounded to 

create two major water supply reservoirs (John H. Kerr Reservoir and Falls Lake). The varied conditions within 

the targeted study area support development of a variety of types and sizes of wetlands. 

 

Figure 3 Map of NC showing Level III ecoregions and NOP targeted study area 

General approach 
Three modeling methods were identified that have previously been used for remote identification of wetlands in 

NC or a neighboring state:  

• An unweighted overlay approach used to identify isolated wetlands in the Dougherty Plain region of 

Georgia (Martin et al. 2012);  

• The machine-learning method MaxEnt used to identify wetlands in the Great Smoky Mountains National 

Park in far western NC (Pfennigwerth et al. 2019); 

• A geoprocessing workflow (Wetland Identification Method, or WIM) (ESRI 2020) recently added to ESRI 

ArcGIS Pro software that is based on the machine learning approach Random Forests and had previously 

been used to identify wetlands in five different study areas in Virginia (O'Neil et al. 2018).  

Additional research papers were reviewed to determine spatial data sources used for modeling wetland 

locations (including Gritzner 2006, McCauley and Jenkins 2005, RTI International 2011, Sutter 1999, and USEPA 
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2016). The most commonly used non-spectral data sources were selected for use in this project and included the 

existing wetland maps (NWI), soils, terrain derivatives (i.e., derived from DEMs, including surface hydrology), 

vegetation communities, and climate.  

Modeling inputs were prepared and models applied in ESRI ArcGIS Pro for the overlay and WIM models. For 

MaxEnt, values for all inputs for each raster cell were exported to text files for modeling in the MaxEnt software. 

All model results and wetland presence/absence from field-verified conditions for each raster cell were exported 

to a text file for further analysis, including calculation of accuracy metrics.  

Model training and testing data 
Generally, both presence and absence data (e.g., known locations of wetlands and non-wetlands) are required 

to assess the accuracy of results from land classification modeling. This type of data is used for model training 

and assessing the final accuracy of the model results (testing). Many research projects use existing spatial data 

(including NWI) for their training and testing data. However, the gold standard is field delineations of wetland 

and non-wetland areas due to their reliance on on-the-ground indicators (such as hydrophytic plants and hydric 

soils) for definitive wetland identification. This project used a statewide data set of field delineations that had 

been compiled previously and used to complete a statewide accuracy of NWI (NCDWR 2021). The results from 

that prior study were used as a baseline for comparison to determine if one or more modeling methods used in 

this study showed an improvement over NWI. 

Spatial data representing field-delineations of wetland and non-wetland areas across NC were obtained from 

several different state and federal government agencies, including the NC Department of Transportation 

(NCDOT), NC Division of Water Resources (NCDWR), NC Division of Mitigation Services (NCDMS), and the 

National Park Service Great Smokey Mountains National Park (NPSGRSM). These data represented just over 

103,000 acres of field-verified conditions from across the state, collected between 2001 and 2019 (Figure 4, 

Figure 5). Details on the preparation and characteristics of this data set were described in a previous report 

(NCDWR 2021), but the data set consisted of a statewide raster that included the wetland status for each cell 

(wetland, non-wetland, or null/no data). While all available data were used for model training, only the NCDOT 

data were used for accuracy assessments due to sources of significant bias found in the other data sources (see 

NCDWR 2021 for more details).  

 
Figure 4. Location of field-delineated data by source agency 
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Figure 5. Relative density of field-delineated features 

 

Overview of variables used as model inputs 
A summary of the 22 variables used as model inputs, and which models they were used in, is provided in Table 

1. Sources for original spatial data included: 

• Soils: NC pre-staged statewide soils geodatabase; USDA NRCS Geospatial Data Gateway, 

https://datagateway.nrcs.usda.gov/  

• Digital Elevation Model (DEM): Statewide 20 ft. seamless DEM; NC State University Libraries, GIS data 

collection, http://geodata.lib.ncsu.edu/NCElev/  

• Vegetation: Statewide 2011 raster of GAP/LANDFIRE National Terrestrial Ecosystems; USGS Gap Analysis 

program, https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/  

• Climate: NC statewide rasters; PRISM Climate Group, Oregon State University, 

https://prism.oregonstate.edu/normals/  

• NWI: NC pre-staged statewide NWI geodatabase; US Fish and Wildlife Service, 

https://www.fws.gov/wetlands/Data/Data-Download.html  

 

 

 

 

 

 

 

 

https://datagateway.nrcs.usda.gov/
http://geodata.lib.ncsu.edu/NCElev/
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/
https://prism.oregonstate.edu/normals/
https://www.fws.gov/wetlands/Data/Data-Download.html
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Table 1 Summary of model variables 

Short 
name 

Variable Description 
Source and calculation 

method 

O
ve

rl
ay

 

M
ax

En
t 

W
IM

 

SOILS 

hydricpa Hydric soil 
presence/absence 

Hydric if >25% of soil mapping unit 
(MU) area is comprised of hydric 
components. 

NRCS soils attribute 
hydclprs  x   

hydric % hydric Percent of soil MU area made up of 
hydric components 

NRCS soils, attribute 
hydclprs 

 x  

aws25 Available water 
supply 0-25cm 

Total potential water available for 
plants in top 25cm of soil 

NRCS soils attribute 
aws025wta 

 x  

aws50 Available water 
supply 0-50cm 

Total potential water available for 
plants in top 50cm of soil 

NRCS soils attribute 
aws050wta 

 x  

drain Soil drainage class Relative level of soil drainage for 
MU 

NRCS soils attribute 
drclasswet 

 x  

TERRAIN DERIVATIVES (DEM-derived) 

elev Elevation Elevation above sea level Raw DEM  x  

sinkdep Sink depth Difference in elevation between 
raw DEM and filled DEM 

Sink geoprocessing (GP) 
tool, then raster math on 
filled and raw DEM 

 x  

issink Sink 
presence/absence 

Located in a hydrologic sink  True if sinkdep > 0 
x   

slope Slope Steepness of surface Slope GP tool on filled DEM  x  

asp Aspect  Topographic aspect Aspect GP tool on raw DEM  x  

curv Total curvature Combined plan and profile 
curvature 

Curvatures GP tool on raw 
DEM 

 x  

plan Plan curvature Curvature perpendicular to slope 
(potential for 
convergent/divergent flow) 

Curvatures GP tool on raw 
DEM  x  

prof Profile curvature Curvature parallel to slope 
(potential for downslope flow) 

Curvatures GP tool 
 x  

tpi Topographic 
position index (TPI) 

Difference between cell elevation 
and the average of the elevations 
from its 8-cell neighborhood 

Neighborhood analysis of 
raw DEM using annular 3x3 
neighborhood 

 x  

twi Topographic 
wetness index 
(TWI) 

Ratio of specific catchment area to 
slope  

TWI GP tool/WIM workflow 
using DEM  x x 

dtw Depth to water Modeled depth to groundwater 
based on distance from surface 
water 

WIM GP tool, DEM and 
NHD   x 

CLIMATE 

precip Average annual 
rainfall 

30-year average, average total 
precipitation/year 

PRISM 
 x  

tempmin Minimum annual 
temperature 

30-year average of annual 
minimum temperature 

PRISM 
 x  

tempmax Maximum annual 
temperature 

30-year average of annual 
maximum temperature 

PRISM 
 x  
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Short 
name 

Variable Description 
Source and calculation 

method 

O
ve

rl
ay

 

M
ax

En
t 

W
IM

 

MISCELLANEOUS 

vegclass 
 

Vegetation class General class of vegetation type GAP/LANDFIRE attribute 
macro  

 x  

vegcomm Vegetation 
community type 

Vegetation community name GAP/LANDFIRE attribute 
ecosys 

 x  

nwi NWI wetland Presence/absence of wetland 
feature in NWI  

USFWS NWI (modified) 
x   

 

Modeling methods 

Overlay model methods 
The primary inputs selected for use in the simple spatial overlay approach were hydric soils, topographic 

depressions, and NWI, as they are commonly used in combination with aerial imagery to manually identify 

wetlands using GIS (e.g. RTI International 2011). These same variables were also used in a similar study in 

Georgia that focused on remote identification of isolated wetlands (Martin et al. 2012); the approach in the 

Georgia study was used as a model for this project. 

The source data for hydric soils was the Natural Resources Conservation Service (NRCS) statewide geodatabase 

of soils mapping units, which was downloaded from the NRCS website in June 2020. The original vector data 

(polygons) were first converted to raster format and the raster joined to several of the attribute tables provided 

in the original geodatabase. The values for each raster cell for 21 attributes associated with hydric soils as well 

as wetland presence/absence from the field delineations were exported to a text file for review. Data reviews 

found that a threshold of >25% for the attribute hydclprs from the table muaggatt was the strongest indicator 

for hydric soils statewide. The original soils raster was then reclassified so that cells with hydclprs > 25% were 

assigned a value of 1 (hydric) and all others assigned a value of 0 (non-hydric) and was used to represent hydric 

soils in the overlay models.  

Topographical depressions in the Georgia study were manually digitized from digital versions of historic USGS 

topographic maps. This was not a feasible approach for our study due to the statewide scale of our analyses. 

Instead, hydrological sinks were used as a surrogate for identification of topographic depressions, since sinks can 

be quickly and automatically identified on a large area using a DEM. A combination of the Fill and Raster Math 

geoprocessing tools were used to identify hydrologic sinks (i.e., groups of cells with elevation lower than all 

surrounding cells). From this, a raster of hydrologic sink presence was made with 1 indicating a cell was part of a 

hydrologic sink and 0 indicating it was not in a hydrologic sink, and this raster was used to represent topographic 

depressions in the overlay models.  

The NWI data used was a modified version prepared for a previous study examining NWI accuracy for the state. 

Preparation of an NWI raster was detailed in a prior report (NCDWR 2021), but essentially consisted of removing 

features from the original vector (polygon) data that are not commonly considered “wetlands”, such as 

deepwater, open water, and lotic systems. The NWI raster was then reclassed, with NWI wetland features 

assigned a value of 1 (wetland present) and all other raster cells assigned a value of 0 (no wetland present).   
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Seven models were prepared using all combination of the hydric soils (hyd), hydrologic sinks (snk), and NWI 

wetland presence (nwi) (Table 2). The inputs for each model were the binary rasters indicating presence (1) or 

absence (0) of each variable. For each model, the input raster(s) were summed using the Raster Math 

geoprocessing tool. All inputs were equally weighted. Results for each raster cell were extracted to a text file for 

analysis. Accuracy statistics were calculated for the entire state as well as for each of the Level III ecoregions. 

Additional analyses were performed for the Northern Outer Piedmont (NOP) focus area to allow comparisons to 

the results from the machine learning modeling.  

The report from the Georgia study (Martin et al. 2012) did not indicate how the results from models with more 

than one input were interpreted as positively predicting a wetland, i.e., wetland predicted if at least one model 

variable was positive (“any”) vs. wetland predicted only if all model variables were positive (“all”). Both the 

“any” and “all” approach were analyzed. The “any” approach resulted in slightly higher accuracy metrics and are 

the results described in this report. 

Table 2 Descriptions of the different overlay models tested 

Model NWI 
Hydric 
soils 

Sink Wetland indicator 

nwi X   NWI wetland feature present 

hyd  X  Soil mapping unit >25% hydric soil components by area 

snk   X Hydrologic sink present 

nwi + hyd X X  NWI wetland or hydric soil presence 

nwi + snk X  X NWI wetland or hydrologic sink presence 

hyd + snk  X X Hydric soil or hydrologic sink presence 

nwi + hyd + snk X X X NWI wetland or hydric soil or hydrologic sink presence 

 

MaxEnt model methods 
Maximum entropy (MaxEnt) is a machine learning method often used in data science and artificial intelligence 

that automates complex statistical model building. While initially used in fields such as thermodynamics, 

linguistics, image analysis, and other complex systems, it has been widely adopted by ecologists in recent years. 

The MaxEnt open-source software used in this project was specifically developed for ecological modeling within 

a spatially-aware environment.  

One very significant advantage of the MaxEnt approach is that it only requires presence data for model training, 

whereas almost all other modeling approaches require absence data as well. Absence data can be especially 

problematic for modeling species distributions since true absences are often difficult or impossible to identify, 

so this unique feature of MaxEnt has made this approach especially popular for habitat suitability modeling.  

The inputs for MaxEnt software include: 1) a text file of the coordinates of confirmed presence records 

(wetlands, in this case); 2) rasters (in ASCII format) of the environmental variables to be used to produce 

predictive models; and 3) rasters (in ASCII format) of environmental variables for the geographic area where the 

model will be applied (which can be the same as #2). A subset of the presence records can be held back by the 

software to use to test the final model, or a separate file of presence records can be provided for testing. The 

software iteratively reviews all combinations of linear-, quadratic-, product-, and threshold/hinge (“hockey 

stick”)-type models for the input variables and selects the combination that provides the greatest separation of 

characteristics between known presence locations and background locations (i.e., locations where presence has 

not been confirmed). It then applies the models in the specified geographic area and assigns a value 
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representing the relative likelihood of presence to each raster cell. The geographic area can be the extent of the 

rasters representing the environmental variables used for model development, or a separate set of rasters may 

be provided for “projection” of the model to a new geographic area. The final output of each modeling run is a 

raster with cell values representing the relative likelihood of occurrence for that cell. There are several different 

options for scaling of this likelihood, but the cloglog output was selected for use in this project, which provides 

likelihood as a decimal value between 0-1. While this scale is similar to output from other modeling methods 

(e.g. logistic regression), it is important to note that the MaxEnt cloglog output is a relative, not absolute, 

likelihood. In other words, a MaxEnt cloglog value of 0.65 should not be interpreted as a “65% probability of 

occurrence” as it would in logistic regression. Instead, 0.65 should be used as a relative value for comparison to 

predictions for other raster cells in the model output.  

In addition to the raster of modeled predictions, the software also provides a large amount of diagnostic 

information, such as area under curve (AUC), response curves for individual environmental variables, and 

contribution/importance of individual variables to the final model. These results can be used to guide setting up 

additional modeling trials with different combinations of variables to try to optimize model performance. For 

example, overall quality of model trials can be quickly compared based on AUC, which ranges from 0-1, with 

higher values indicating better model performance. Results from jackknifing and response curves for individual 

variables show which ones provide unique information to the model or do not seem to contribute much value to 

the model.  

One shortcoming of MaxEnt is that the output of the software does not allow full assessment of model 

performance using the types of accuracy metrics traditionally used for land classification mapping applications. 

While the software can calculate model sensitivity (i.e., errors of omission) using a subset of the presence data 

withheld for testing, specificity (errors of commission) is estimated statistically. Since the extent of over- and 

under-prediction can be much more critical in land classification projects than when predicting species 

distributions, and confirmed absence records were available for this project, traditional accuracy statistics 

(Producer’s Accuracy, User’s Accuracy, and odds ratio) were calculated by comparing model results to field-

delineated data. This allowed direct comparisons of accuracy to other modeling methods. 

Above is a very brief overview of the MaxEnt modeling method and software, but there are many references 

available that provide more detail (e.g., Elith et al. 2011, Merow et al. 2013, Phillips 2017). MaxEnt has a wide 

range of support documentation and journal publications available to assist new users with implementing the 

approach and configuring the software. 

For the MaxEnt modeling portion of this project, the geographic area was limited to the NOP targeted study area 

(Figure 3). Rasters for a total of 18 environmental variables (Table 1) were created that included various 

attributes of soils, topography/terrain, climate, and vegetation. All rasters were exported to ASCII and 

reformatted to meet the MaxEnt software requirements. The raster created from the field-delineated data (i.e., 

model training and testing data) was used to create a text file of coordinates for presence records.   

Wetland Identification Method (WIM) model methods 
The Wetland Identification Model (WIM) was recently integrated into the ArcHydro geoprocessing toolbox add-

in for ESRI ArcGIS Pro. It is based on research by O'Neil et al. (2018) and uses another machine learning approach 

(Random Forests) to identify potential wetlands using Topographic Wetness Index (TWI), surface curvatures, and 

a depth-to-water index (ESRI 2020). The method was previously applied in several test locations in Virginia, with 

results showing significant increases in accuracy of wetland identification as compared to NWI. The WIM 
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includes a set of Python script tools that call other existing ArcGIS geoprocessing tools (such as the 

Segmentation and Classification and Random Trees toolsets) as well as machine learning functions from the 

Python scikit-learn library.  

All of the rasters representing model variables were created by analysis of the statewide DEM. Calculation of the 

depth-to-water index required spatial data representing surface water (streams, lakes, etc.) in addition to the 

DEM. The source for this was the USGS National Hydrography Dataset (NHD). The Random Trees modeling 

method requires both presence and absence data, which were both available in our training and testing data set 

(i.e., field delineations of wetlands and non-wetlands).  

Software 
Spatial data management, review/editing, and geoprocessing were completed using ESRI ArcGIS Pro and terrain 

and hydrology tools included in the ArcHydro toolbox add-in. Geoprocessing tools available for use were limited 

due to the available license level (Standard, with Network Analyst and Spatial Analyst extensions). One modeling 

method (the Wetland Identification Method in ArcHydro) required the installation of an additional Python 

library (scikit-learn). Jupyter notebooks were used within ArcGIS Pro projects to document any Python code 

created for the project and to allow for consistent re-running of workflows. Raster data were generally exported 

to text files and imported into SAS JMP for additional data reviews and statistical analyses, including calculation 

of accuracy metrics. Microsoft Excel was used for preparing graphs. For MaxEnt modeling, spatial data were 

exported from ESRI ArcGIS Pro and analyzed using MaxEnt v3.4.3 software (Phillips et al. 2020). 

Geoprocessing 
The spatial data used to prepare inputs for modeling were obtained as a mix of vector and raster types. All data 

were converted to raster to allow modeling and accuracy assessments at the scale of the individual raster pixel. 

The use of consistent geoprocessing settings throughout the project ensured proper alignment of all spatial data 

and reduced risks of unexpected or erroneous results. Settings were selected to match those used by the DEM 

used in this project since resampling and re-projecting the DEMs would have had a much more significant effect 

than on other data sources, with a high probability of introducing artefacts (such as sinks/pits) that would be 

propagated from the DEM derivatives. The projection used throughout the project was NC State Plane Feet. 

Raster resolution was set to 20 feet. All rasters that were created were snapped to a consistent reference raster 

to ensure perfect alignment of all rasters.  

Classification accuracy assessment methods 
The NWI and field-delineated rasters were overlaid in ESRI ArcGIS Pro. The classifications for individual pixels 

from both data sets (along with ancillary characteristics from the field-delineated data) were exported to a text 

file for analysis. Any pixel that had a null value in one or both data sources was excluded from analysis.  

The first step in the analysis process was to create a contingency table (Table 3). For each data record (i.e., raster 

pixel), the NWI classification was compared to the field-delineated classification and assigned a wetland 

classification accuracy of true positive (A in Table 3), false positive (B), false negative (C), or true negative (D). 

The total number of records in each category was used to build a contingency table, which is used as the basis 

for calculating many common accuracy measures (Congalton 1991, Fielding and Bell 1997). 
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Table 3. Contingency table example 

  Field-delineated classification 

  Wetland Non-wetland TOTAL 

NWI 
classification 

Wetland A B A + B 

Non-wetland C D C + D 

TOTAL A + C B + D A + B + C + D 

 

For this project, accuracy metrics included overall accuracy (OA), error of commission (EC), error of omission 

(EO), Producer’s Accuracy (PA), and User’s Accuracy (UA), and were calculated using the following equations:  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑂𝐴) (%) =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
× 100 

𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑡𝑙𝑎𝑛𝑑 (𝐸𝑂𝑊𝐿) (%) =  
𝐶

𝐴 + 𝐶
× 100 

𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑡𝑙𝑎𝑛𝑑 (𝐸𝐶𝑊𝐿) (%) =  
𝐵

𝐴 + 𝐵
× 100 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑒𝑡𝑙𝑎𝑛𝑑(𝑃𝐴𝑊𝐿) (%) =  
𝐴

𝐴 + 𝐶
× 100 = (1 −  𝐸𝑂𝑊𝐿) × 100 

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑒𝑡𝑙𝑎𝑛𝑑 (𝑈𝐴𝑊𝐿) (%) =  
𝐴

𝐴 + 𝐵
× 100 = (1 −  𝐸𝐶𝑊𝐿) × 100 

Overall accuracy (in this case, the percentage of pixels correctly classified by NWI) is one of the more commonly 

reported metrics in land classification accuracy assessments. It reflects the accuracy of all categories (in this 

case, wetland and non-wetland) but can be somewhat misleading if one class is much more prevalent than the 

other, as is the case with non-wetlands in NC. A better understanding of NWI accuracy can be gained by 

examining the additional accuracy metrics described above that focus on a single classification, such as 

wetlands. For example, EOWL quantifies the frequency of predicting a non-wetland on the ground when a 

wetland does exist and ECWL indicates the frequency of a wetland being predicted on the ground when one does 

not exist. These measures are captured by PAWL and UAWL, which historically have been the measures most 

commonly reported for land classification mapping. PAWL is often described as accuracy from the mapper’s 

perspective and describes the frequency at which a particular classification that exists on the ground is correctly 

identified by the map (NWI, in this case). A high PAWL implies a low EOWL. Conversely, UAWL represents the 

perspective of the map user, and is the frequency that a specific classification will be found on the ground when 

it is indicated on the map. A high UAWL implies a low ECWL. 

The odds-ratio statistic, like overall accuracy, provides a single number to represent the accuracy of all 

classifications. However, it is not sensitive to relative differences in prevalence between classes (Fielding 1997), 

making it useful for comparisons across data groupings or categories (such as size class or ecoregions), so the 

odds ratio (as opposed to overall accuracy) is used in this report. It is calculated as: 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝐴 ∗ 𝐷

𝐵 ∗ 𝐶
 

The odds ratio has a lower limit of 0 and the upper limit depends on the sample size. It is undefined when B 

and/or C equal zero. Larger values of the odds ratio indicate higher accuracy.  
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Results and Discussion  

Overlay models results 
Overlay analyses were completed statewide for seven different models: nwi, hyd, snk, nwi + hyd, nwi + snk, hyd 

+ snk, nwi + hyd + snk (Table 2; Figure 6). Detailed analysis of results from the nwi model were previously 

completed and reported in a separate report (NCDWR 2021), but significant findings included very high errors of 

omission for smaller wetlands (<1.0 ac.), which affected areas of the state where smaller wetlands were 

common, such as the Piedmont and Blue Ridge Level III ecoregions.  

Almost all of the overlay models showed low odds ratios for almost all ecoregions and statewide (Figure 6). 

There was one outlier with an unexpectedly high odds ratio in the Blue Ridge ecoregion, but a manual review of 

spatial data suggested that this reflected nwi capturing the largest wetlands in this area while missing the great 

majority of the smaller wetlands (NCDWR 2021). The nwi model may also reflect a higher rate of correct 

identification of non-wetlands, since the odds ratio reflects the accuracy of all classifications. The higher rate of 

correct identification of non-wetlands may have contributed to the high odds ratio in the Blue Ridge ecoregion. 

Overall, the nwi had higher odds ratios for individual ecoregions than most of the other models, though the nwi 

model varied widely across ecoregions, suggesting it may have inconsistent reliability statewide. The hydrologic 

sinks (snk) provided the lowest overall performance based on odds-ratios, particularly in the eastern portions of 

the state (Southeastern Plains and Middle Atlantic Coastal Plain). The addition of other model variables to nwi 

did not lead to an increase in the odds ratio for any of the combined models (nwi + hyd, nwi + snk, nwi + hyd + 

snk). 

 

Figure 6 Odds ratios for overlay models by ecoregion and statewide 

The odds ratio reflects accuracy of correctly identifying both wetlands and non-wetlands. Accuracy of correctly 

identifying the wetland class only is better captured by the PAWL (Figure 7) and UAWL (Figure 8). While nwi 

appeared to be the best performing model overall when reviewing odds ratio results, PAWL results indicate that 

nwi was one of the worst performers; only snk was slightly worse for any individual ecoregion. However, snk 

was extremely consistent across all ecoregions, even if the PAWL tended to be low. For all other models, distinct 

differences existed in PAWL between ecoregions, with much higher accuracies in the eastern portion of the state 
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(Southeastern Plains and Middle Atlantic Coastal ecoregions) than in the central (Piedmont ecoregion) or 

western (Blue Ridge ecoregion) areas. In contrast to what was seen with the odds ratio results, the combined 

models (nwi + hyd, nwi + snk, hyd + snk, and nwi + hyd + snk) tended to show improved accuracy in identifying 

the wetland class as compared to the individual models (nwi, hyd, and snk).  

 

Figure 7 Producer's Accuracy for wetlands classification (PAWL) for overlay models by Level III ecoregion 

This moderate to high PAWL values for certain models and ecoregions suggest that there are often low errors of 

omission in the overlay models – in other words, most of the raster cells that are truly wetlands were correctly 

classified as wetlands in many cases. However, this is countered by low UAWL results (Figure 8) for most models 

except for nwi, which suggests high errors of commission. In other words, while many wetlands are correctly 

identified by the combined models, the models also tend to overestimate the presence of wetlands, resulting in 

relatively large frequency of false positives. All models appeared to provide their best balance of over- and 

under-prediction in the Middle Atlantic Coastal Plain ecoregion, but over-prediction still seemed to be a 

significant issue even there. Over-prediction (i.e., low UAWL) for most models was much worse in the Blue Ridge 

and Piedmont ecoregions.  

 

Figure 8 User's Accuracy for wetlands classification (UAWL) for overlay models by Level III ecoregion 

Additional analyses were completed based on size class of the field-delineated features (<0.1ac., 0.1-0.25ac, 

0.25-0.5ac, 0.5-1.0ac, >1.0ac).  The odds ratios by size class (Figure 9) showed that all models performed 

extremely poorly for features smaller than 1.0 ac. However, the large increase for features >1.0 ac in size may 
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also be due in part to the inclusion of non-wetland features when calculating these values, since non-wetland 

features tended to be much larger than wetlands. The snk model was the only model that did not show this 

markedly different accuracy between features <1.0 ac. and >1.0 ac. in size. 

 

Figure 9 Odds ratio for overlay models by groundtruthed feature size 

The PAWL and UAWL (Figure 11) results showed that accuracy specifically for wetlands was also much lower for 

the smaller size classes for all models. The one exception was snk, which had uniformly moderate values for all 

size classes. This was the only variable that was calculated at the scale of the individual raster cells using a 20 ft. 

resolution DEM, rather than from converting existing vector data that were mapped at a much coarser scale 

(soils and NWI). This consistency in results from the snk model may also be at least partially due to the relatively 

impartial nature of its derivation (i.e., automated calculation from a DEM) in additional to the scale of the data, 

whereas the sources for nwi and hyd were the product of manual interpretation of aerial photos and similar 

sources, which may have been more subjective.  

The combination of relatively high UAWL and relatively low PAWL values for all but the largest wetland size class 

implies that most models had large errors of omission for smaller wetlands. This same result was previously 

seen in an earlier NCDWR study that examined accuracy of NWI data for NC (NCDWR 2021). For large wetlands 

(>1.0 ac), the inverse was true – results suggested that nearly all of the overlay models had high errors of 

commission for large wetlands.   

Because wetland size is strongly related to ecoregion, these results based on size class confirm that NWI, as well 

as hydric soils, are very likely to significantly underestimate wetlands in the Piedmont and Blue Ridge ecoregions 

mainly due to the higher prevalence of smaller wetlands in these areas, and that NWI and soils maps may be 

poorly suited to any projects that require identification of features <1.0 ac. in size, even when these variables 

are used in combination. However, the PAWL and UAWL did show improvement in the combined models (nwi + 

hyd, nwi + snk, hyd + snk, and nwi + hyd + snk) as compared to the single-variable models.  
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Figure 10 Producer's Accuracy for wetlands classification (PAWL) for overlay models by field-delineated wetland size class 

 
Figure 11 User's Accuracy for wetlands classification (UAWL) for overlay models by field-delineated wetland size class 

MaxEnt models results 
A total of 27 model trials were completed for the NOP targeted study area. Results from two of these runs are 

discussed below: a baseline model (run 75) that used all available environmental variables, and a minimal model 

(run 76) that removed correlated variables and those that were not found to be valuable in the majority of 

modeling trials. Environmental variable rasters corresponded to the full rectangular extent of the targeted study 

area boundary, so there were some areas outside of the NOP boundary used by MaxEnt as background points 

(raster cells where wetlands had not been verified to be present) to characterize environmental conditions. As 

with the overlay models, only NCDOT groundtruthed points (wetland and non-wetland) from within the NOP 

focus area boundary were used to calculate the final accuracy metrics, though field-delineated wetland features 

from other agencies were used for model training.  



19 
 

The initial training and testing data sets were each comprised of an independent random subset of 

approximately 890 groundtruthed wetland points (about 10% of the total number of wetland points). However, 

early model runs appeared to suffer from overfitting to the environmental variables, presumably due to spatial 

autocorrelation of the training points. One example of overfitting was distinct banding in spatial results, which 

appeared to be due to overfitting of the precipitation variable (Figure 12). Many of these model runs using the 

initial training data set tended to have extremely good model diagnostics reported by the software (AUC and 

gain) and issues were only discovered when reviewing the spatial output. Much better results were obtained 

using a random subset of 100 groundtruthed wetland points from the NOP targeted study area as the training 

data, but the exact sample size and method for selecting subsamples for training and testing data are an area 

that would be worthy of additional research.  

        

Figure 12 An extreme example of banding due to model overfitting in spatial model results (left) and precipitation contours for the same 
area (right) in the northern Piedmont of NC. Cooler colors (blues) indicate lower values and warm colors (red) indicate highest values of 
predicted likelihood of wetlands (top) or 30-year average annual precipitation (bottom). In top image, purple squares indicate location of 
groundtruthed model training data and black areas are null values due to raster cells with missing soils attributes.  

The overfitting issue may also be partly due to the strong clustering of the training and testing data (Figure 13). 

A large proportion of the field-delineated data were associated with two large NCDOT projects in the central and 

southern portions of the focus area. The northern and easternmost portions of the NOP targeted study area 

appeared to have been poorly represented in the training/testing data. There was a total of 160 wetland 

features representing a total area of 63 ac. Wetland size ranged from 0.002 – 3.5 ac., with a mean of 0.4 ± 0.6 

ac. and median of 0.15 ac. The 70 non-wetland features totaled 4,401 ac., and ranged in size from 0.02 – 1,577 

ac., mean 62.9 ± 216 ac., and median 5.2 ac.  

The baseline model (run 75) resulted in a model with good diagnostics (AUC = 0.969, test gain = 2.971, averaged 

over 10 replicates). The relative importance of individual variables in the final complete model are summarized 

in Table 4. In spite of including 18 different variables, only five of them were major contributors to the final 

model: hydric, vegcomm, slope, elev, and tempmin. A potential issue with this “kitchen sink” approach is that 

the inclusion of too many variables may lead to modeling “noise” (such as the variability inherent in the data) 

rather than meaningful environmental conditions. Initial data reviews of the environmental variables found that 

a large number of variable were strongly correlated with each other.  For example, PCA results showed a strong 

clustering of all soils variables (aws25, aws50, hydric, drain) and of curvature-related variables (curv, plan, and  
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tpi). Slope and elev, both of which were 

major contributors to the baseline model, 

were also correlated, though the other 

three variables that were major 

contributors were not.  

Some users of machine learning modeling 

methods, such as MaxEnt, take the 

approach that the algorithms are able to 

compensate for covariance of model 

variables. This seemed to be the approach 

taken in the GRSM wetland modeling 

study (Pfennigwerth et al. 2019). The 

paper did not specify any tests for 

correlation or covariance and it appeared 

to include a number of environmental 

variables which were identical based on 

their descriptions (e.g., TPI and 

topographic ruggedness index [TRI]), 

would be expected to be correlated (e.g., 

Leaf-on Vegetation Class and Vegetation 

Class) or were found to be correlated in 

our study (e.g., soil attributes).  

Review of the spatial output of the baseline/complete model (Figure 14) revealed a significant issue: there were 

widespread gaps in the results corresponding to missing values for certain soils attributes (aws25, aws50, and 

drain) that were primarily associated with the Water and Urban soil 

types. This effect was somewhat desirable for the Water classification, 

since it screened out the many ponds in this area, reservoirs, and large 

rivers, and appeared to have minimal effect on identification of the 

target feature type (wetlands) in undeveloped areas. However, the null 

values associated with Urban soil types precluded identification of 

wetlands in much of the southwestern portion of the focus area where 

some of the major cities and towns were located (Raleigh, Cary, Garner, 

Morrisville). Not being able to model areas where development 

pressures and potential wetland impacts are most likely to occur was 

considered to be a significant weakness of this model. 

While the baseline model (run 75) used all available environmental 

variables, some modelers suggest that machine learning approaches 

should still use the traditional approach in statistical modeling of 

removing correlated variables prior to creating a model. This is thought 

to result in models that are parsimonious and that avoid fitting “noise” 

rather than ecologically meaningful relationships (Merow et al. 2013). 

This was the approach taken for model run 76 (minimal model).  

 
Figure 13 Location of field-verified training and testing points within NOP 
targeted study area 

Table 4 Variable contributions to MaxEnt 
model complete model (run75) 

Variable 
Percent 
contribution 

hydric 24.7 

vegcomm 18.5 

slope 14.0 

elev 10.7 

tempmin 10.5 

sinkdep 5.3 

tempmax 3.2 

drain 2.4 

vegclass 2.3 

tpi 2.1 

aws25 1.7 

precip 1.1 

plan 1.1 

prof 0.9 

twi 0.7 

aws50 0.6 

asp 0.2 

curv 0 
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Figure 14 Spatial output of MaxEnt model run 75 (complete model) 

 
Figure 15 Spatial output of MaxEnt model run 76 (minimal model) 
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Figure 16 Example of model outputs, showing comparison of NWI coverage versus model predictions by both MaxEnt models. 

Variable selection for the minimal model was focused on reducing covariance between individual 

variables, as well addressing issues that were seen in previous runs, such as missing values for certain 

soil attributes and overfitting to precip. To address the issues with the soils, the hydric variable was used 

to represent soils, as it did not exhibit that same issue. Because precip was causing overfitting problems, 

and temperature data were highly correlated with precip, temperature was selected as a surrogate and 

climate conditions were represented by tempmin or tempmax. Model runs were iterative and variables 

included were modified based on the variable contribution and jackknife reports provided by the 

MaxEnt software and using best professional judgment. Minor adjustments to settings were also made 

(including modeling feature types used, particularly the threshold and hinge types). Most of the 

assessments of model trials were completed using the diagnostics provided by MaxEnt and visual review 

of spatial results in ArcGIS Pro.  
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The final minimal model included eight variables (Table 5), though many 

of the top contributors to the model overlapped those from the 

complete model (run 75). Mean model diagnostics from 10 replicates 

run with cross-validation were AUC = 0.969 ± 0.015 and unregularized 

test gain of 3.028, which were comparable to the complete model. 

While the complete model seemed like it may have controlled for 

covarying variables, the complete model took much longer to run due 

to the increased number of variable combinations to be examined and 

the number of variables to be assessed through jackknifing.  

The most notable feature in the spatial output of the minimal model 

(Figure 15) was the lack of areas of missing data, which was due to the 

exclusion of the problematic soil variables aws25, aws50, and drain. 

However, the minimal model (run 76) appeared to show lower potential for wetlands in the 

northwestern and eastern portions of the NOP focus area than the complete model (run 75). These are 

the areas that had a distinct lack of training and testing data, so it cannot be determined whether the 

complete or the minimal model provided a more accurate picture for this area. This lack of field-

delineations in these areas leads to a question of whether the conditions in these areas were sufficiently 

represented in the training data set. The minimal model also had distinct “halos” of moderate cloglog 

values in the southern portion of the NOP that were not present (or at least not as pronounced) in the 

complete model. Figure 16 shows an example of the outputs of both models overlaid with NWI, showing 

a greater spatial wetland prediction by the MaxEnt complete model than the minimal model. Both 

predicted greater wetland area(s) than NWI in the NOP.  

One similarity between all variables included in the minimal model and the best performing variables in 

the complete model was that they were all from data sources that are updated, albeit irregularly in 

some cases. The vegcomm (from the GAP/LANDFIRE land cover dataset) is updated every five years. The 

tempmin is based on a 30-year average and is updated every 10 years. All other variables were derived 

from the legacy DEMs collected statewide in the early 2000’s, but more recent and higher resolution 

DEMs are available from LiDAR collected within the last 10 years. Chances are good that LiDAR data 

collections will be repeated in the future, given the importance of having current and high-accuracy 

elevation data to the state’s emergency management agencies (for flood mapping, for example). 

Methods such as those used in this study, that incorporate data collected repeatedly over time, provide 

an opportunity for regular updates of wetland maps without the extremely intensive requirements for 

time, training, and expertise required in manual review and digitization used currently in data sources 

such as NWI. 

The outputs of the MaxEnt models were rasters showing a relative likelihood (as the “cloglog”) of 

wetland presence for each raster cell. To calculate accuracy metrics for the MaxEnt models, these 

rasters of probabilities were converted to a presence/absence format, which required selection of a 

threshold. For each model, the cloglog values for each raster cell with a wetland or non-wetland 

classification assigned from field-delineations were exported for analysis. The 10th, 15th, 20th, 25th, and 

30th percentiles of the cloglog for the wetland cells were calculated for each model. Each of the 

percentile values was then used to create a separate field indicating predicted wetland presence or 

absence based on the individual threshold and accuracy metrics calculated. As an example, the PAWL and 

UAWL for each of the thresholds for the complete and minimal models are shown in Figure 17. This 

Table 5 Variable contributions to 
MaxEnt model run 76 (minimal 
model) 

Variable 
Percent 
contribution 

hydric 32.7 

vegcomm 20.4 

tempmin 13.4 

elev 11.3 

sinkdep 10.7 

slope 7.4 

tpi 3.0 

plan 1.2 



24 
 

shows the typical relationship in classification assessment – increasing PAWL can come at the cost of 

lowering UAWL. In this case, using the 10th percentile for either model would result in highest PAWL but 

also the highest over-prediction of wetlands (i.e., lowest UAWL). Conversely, while the NWI UAWL was 

higher for the targeted study area than any of the MaxEnt models, the PAWL was quite low, suggesting 

that NWI both over- and under-predicts significantly.  

All of the MaxEnt model thresholds resulted in very large increases in PAWL relative to NWI, suggesting 

that the MaxEnt models were capturing many more actual wetlands in the landscape. While there was a 

decrease in UAWL (therefore over-prediction) as PAWL increased, it was much more modest than the 

corresponding drop in PAWL.  

 

Figure 17 Producer’s Accuracy and User’s Accuracy for nwi and for various thresholds (percentiles) for MaxEnt complete model 
(run 75) and minimal model (run 76) 

For the overall accuracy metrics, odds ratios (Figure 18) were fairly consistent across all thresholds for 

each MaxEnt model. Odds ratios for all thresholds for run 75 (complete model) were very similar to the 

odds ratio for NWI. Odds ratios for all thresholds in run 76 (minimal model) were greater than the NWI 

result.  
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Figure 18 Odds ratio for nwi and for various thresholds (percentiles) for MaxEnt run 75 (complete model) and run 76 (minimal 
model) 

The 30th percentile values for both the complete and minimal model were selected to create the 

presence/absence rasters since they provided a good balance of correct identification of wetlands, over-

prediction, and under-prediction. For the complete model (run 75), this threshold was 0.3787. For the 

minimal model (run 76), the threshold was 0.3285. The thresholds were used to reclassify the rasters of 

cloglog outputs and create new rasters showing predictions of wetland presence or absence.  

The final presence/absence model outputs were combined with the field-delineated data in ESRI ArcGIS 

Pro and values exported to a text file for additional analyses based on wetland size class (< 0.5 ac. or ≥ 

0.5 ac.) (Figure 19). Results showed that MaxEnt models as well as NWI showed inverse trends 

depending on the wetland size class, with under-prediction more prevalent in smaller features and over-

prediction more prevalent in larger features. Both MaxEnt models, however, outperformed NWI in 

identifying smaller wetland features (<0.5 ac) based on both PAWL and UAWL, and the differences 

between PAWL and UAWL for each MaxEnt model were much smaller than seen for NWI. For wetlands 

>0.5ac., NWI had a slightly higher UAWL than the MaxEnt models and a smaller difference between PAWL 

and UAWL, but the MaxEnt models had higher PAWL.  

 

Figure 19 Producer's Accuracy and User's Accuracy of nwi, Maxent run 75 (complete model), and MaxEnt run 76 (minimal 
model) by wetland feature size class in NOP focus area 
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In summary, the MaxEnt modeling process using these particular variables did not show significant 

differences in model diagnostics or calculated accuracy measures whether using the entire set of 

variables or iteratively selecting only the most high-performing and valuable variables. While model 

diagnostics provided by the MaxEnt software were useful, high AUC and gain could be the result of 

overfitting or other issues, so visual review of the spatial output and calculation of classic accuracy 

measures were required for final assessment of the individual model runs. Several model variables were 

found to have significant impacts on results, so thorough reviews of environmental variables should be 

performed prior to and during the modeling process. Selection of a threshold to use for determining 

presence/absence in the final spatial data set should be supported by some specified criteria or 

rationale. In this study, I attempted to balance the risk of over-prediction and under-prediction based on 

PAWL and UAWL, but other applications may choose to more heavily weight either the error of 

commission or of omission.  

When MaxEnt models were compared to the overlay models for all data (Table 6), the MaxEnt models 

had very similar results as hyd and nwi + hyd.  MaxEnt PAWL accuracy was an improvement over NWI but 

the MaxEnt models also had a small decrease in UAWL. The MaxEnt approach, however, had the 

significant benefit of increasing accuracy for smaller wetland features (<0.5 ac).  

Table 6 Accuracy statistics for the NOP targeted study area for MaxEnt and overlay models 

Model PA UA Odds ratio 

MaxEnt complete model (NOP run 75 ) 75% 17% 28.9 

MaxEnt minimal model (NOP run 76) 75% 18% 36.4 

nwi 47% 25% 29.6 

hyd 73% 14% 26.9 

snk 59% 9% 9.8 

nwi+hyd 79% 14% 33.6 

nwi+snk 73% 9% 16.1 

hyd+snk 84% 8% 22.6 

nwi+hyd+snk 86% 8% 26.1 

 

ESRI Wetland Identification Model (WIM) results  
We attempted to apply the WIM approach that has recently been added to the ESRI ArcGIS Pro 

ArcHydro toolbox to the same NOP focus area used for MaxEnt modeling. However, numerous errors 

were encountered using both the Wetland ID Workflow data model in the WIM toolbox and the 

individual script tools. We were unsuccessful in even creating the inputs required for the Random 

Forests modeling.  

As part of the troubleshooting, the individual Python scripts that made up the individual script tools 

were reviewed to gain an insight into the geoprocessing workflow. Many of the processes used in WIM 

incorporate other standardized geoprocessing tools, but the recommended method for the initial 

smoothing of the DEM (Perona Malik) depended on functions in the SciKit Learn Python library. These 

functions apparently had limitations on the maximum size of the DEM it was able to process. A 

maximum size limit was not mentioned in the documentation at the time (ESRI 2020), but the method 

developer indicated that the size limit was significantly smaller than a USGS 12-digit hydrologic unit (HU) 

(Gina O’Neil, pers. comm., Feb. 3, 2021). The size of a HU-12 averages approximately 33 mi2 in NC, or 

roughly equal to one-fifth of the area of the city of Raleigh. This size limitation may also mean that it is 
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only applicable in headwater systems: one of the required inputs (TWI) required calculation of the 

drainage area for each raster cell, so the tools would only be applicable to project areas whose entire 

watershed is below the size threshold required by the SciKit Learn functions.  

Because of the previously unidentified size limitation and the technical issues with getting the geospatial 

tools to run successfully, this approach was abandoned and could not be assessed as part of this project. 

Based on existing research, the WIM seems to be a promising approach for remote identification of 

wetlands, and has the added benefit of being a “canned” toolset provided with ArcGIS Pro’s ArcHydro 

toolbox add-in. The input data required (DEM and stream/surface water location, such as the National 

Hydrography Dataset) are also minimal and readily available. However, this particular toolset does not 

seem to be appropriate for the use of predicting wetlands over moderately sized or large areas.  

The WIM is a fairly new method and will likely be further refined in coming years. Based on the currently 

available research, it appears to be a promising approach and could be immediately applicable to small 

project areas (e.g., private development, transportation projects). Much of the method could potentially 

be applied manually (either directly with existing geoprocessing tools or approximated using other 

workflows) to larger areas, using an alternative DEM smoothing method and the documentation and 

Python scripts as a guide. 
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Conclusion 
NWI has been shown to be a problematic data set for identifying wetlands in NC, though it is the only 

source of wetland maps available for the state and for much of the US. Prior work done by NCDWR has 

demonstrated that NWI has inconsistent accuracy across the state. NWI does an extremely poor job of 

identifying wetlands <1.0 ac. in size, and consequently NWI accuracy is very low in areas of the state 

where wetlands tend to small, such as the Piedmont and Blue Ridge ecoregions (NCDWR 2021). These 

findings were expected, based on the age of the NWI data and the mapping standards used to create it 

(Tiner 1997). The US Fish and Wildlife Service (USFWS), the creators and current stewards of the NWI, 

will no longer update the data set, and are relying on other agencies and entities to take on that role. 

Some other states have undertaken that effort but meeting the requirements of the wetland mapping 

standards for NWI updates (FGDC 2009) means that updates to NWI will continue to be problematic in 

many ways. For example, the mapping methods require that only wetlands >0.5 ac. in size be included 

on the map, and only those wetlands above that minimum mapping size be included in accuracy 

assessments. The mapping methods are based on those that were in use when NWI was first developed 

40-50 years ago and require manual digitization and attribution of wetland features, which is a time-

intensive – and therefore expensive – approach, which means that future updates will be infrequent. 

The NWI mapping standards also require identification of features not commonly considered 

“wetlands”, such as deepwater, open water, and stream/river systems, and assignment of a wetland 

classification following a classification system (Cowardin 1979) that is complicated and rarely used 

outside of NWI, at least in NC. These additional requirements of including non-wetland habitats and 

assigning Cowardin classifications will increase time and expertise needed for updating NWI, and for 

information that is not usually of use to most wetland scientists, regulators, and the regulated 

community.  

Exploration of more modern approaches to predict wetland locations and extent are common in the 

scientific literature, including several studies in NC or adjoining states. These take advantage of 

automated classification techniques and GIS and show potential for creating wetland maps outside of 

the NWI framework that will be more relevant to the majority of current users of NWI. They take 

advantage of advances in GIS software, spatial data collections, and computing power over the last 

several decades and can be quicker and cheaper to complete than manual wetland mapping techniques. 

GIS- based automated classification methods reduce potential sources of bias due to human 

interpretation of remote sensing data, and are also repeatable, which would allow more frequent 

updates to the data and therefore allow better tracking of changes to wetland resources over time.  

This study focused on a cursory examination of two different approaches to creating updated wetland 

maps: simple spatial overlays and more complex machine-learning methods. The overlay approach used 

here was based on the one used in a study in the Level III ecoregion Southeastern Plains in Georgia 

(Martin et al. 2012).  The Georgia study reported slightly different accuracy measures, including 

sensitivity and specificity. Sensitivity is equivalent to the PAWL used in this study and specificity refers to 

the accuracy of correctly identifying non-wetlands (which was not considered in our study). The Georgia 

study found the NWI to have a specificity of 68%, which is well above the PAWL of 49% that was reported 

for the Southeastern Plains in NC in a prior NCDWR report (NCDWR 2021). The Georgia study also found 

that a “complete” model using NWI, hydric soils, and topographic depressions performed best, resulting 

in a sensitivity of 88%. Our results from a similar overlay resulted in an increase in PAWL to 81%, though 

the overlay model also resulted in decreased UAWL from 60% to 25% for this ecoregion, suggesting that 
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although more wetlands are correctly predicted, the nwi + hyd + snk model also resulted in over-

prediction of wetlands.  

Methods from a study in Virginia using Random Forests to identify wetlands (O'Neil 2018) serve as the 

basis for the Wetland Identification Method (WIM) tools recently incorporated into ESRI ArcGIS Pro 

(ESRI 2020). The Virginia study included one study area in the Middle Atlantic Coastal Plain Level III 

ecoregion, which also occurs in NC. The PAWL values for this study showed an increase to 81% for the 

model as compared to the NWI baseline of 32%. However, there was also an accompanying decrease in 

UAWL from 90% for NWI to 61% for the Random Forests model. Our baseline accuracy for NWI in this 

ecoregion was somewhat different than in Virginia, with a PAWL of 53% and UAWL of 68%. While we were 

unable to apply the WIM method for this project, the best performing overlay model for this ecoregion 

in our study was nwi + snk, which resulted in the best combination of increased PAWL (70%) and 

minimally reduced UAWL (49%), not quite as good as the improvements found in Virginia. 

The NCDOT has had an ongoing research project for approximately ten years that is focused on 

developing spatial models for remote identification of wetlands that can be applied on a project-by-

project basis. The most recent models were derived using a Random Forests approach in several Level IV 

ecoregions in eastern NC (NCDOT 2017, Wang 2015).  NCDOT did not report the accuracy of NWI as a 

baseline for comparison, but NWI accuracy was reported for these Level IV ecoregions in a previous 

NCDWR report (NCDWR 2021) so those are presented for comparison (Table 7). Based on these findings, 

the Random Forests approach seemed to show improvements over NWI for PAWL in the Rolling Coastal 

Plain Level IV ecoregion, results were fairly similar to NWI for the Southeastern Floodplains and Low 

Terraces, and accuracy dropped slightly as compared to NWI in the Carolina Flatwoods.  

 

Table 7 Comparison of Producer's Accuracy and User's Accuracy for NWI (baseline) and NCDOT wetland model 

 NWI NCDOT model 

Level III ecoregion 
 Level IV ecoregion 

PAWL UAWL PAWL UAWL 

Southeastern Plains 49% 60% N/A N/A 

 Rolling Coastal Plain 42% 53% 63% 27% 

 Southeastern Floodplains & Low Terraces 65% 69% 65% 52% 

Middle Atlantic Coastal Plain 53% 68% N/A N/A 

 Carolina Flatwoods 59% 65% 50% 44% 

 
While results from this and other studies showed somewhat mixed results, there are indications that 

models developed to support automated remote identification of wetlands may be a more efficient and 

cost-effective method for developing more useful and current wetland maps for the state. There are a 

number of technical issues that could not be addressed in this study, such as spatially correlated model 

variables, modification of modeling parameters, and limitations with currently available geoprocessing 

tools. However, these preliminary results suggest that use of more “unbiased” data sources for 

modeling (such as DEMs) as compared to maps derived from outdated methods like manual 

photointerpretation may address some key weaknesses previously identified in the NWI, particularly the 

poor accuracy for wetlands <1.0 ac. in size. Furthermore, automated methods would be realistically 

repeatable on a regular basis, ensuring that available wetland maps more closely represent current 

conditions. 
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